
ADA092 128 MASSACNUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/ 9/

SNEW ALGORITHM FOR TWO-DIMENSIONAL MAXIMUM ENTROPY POWER SPECT--ETC(U)
S UG 80 J S LIM, N A MALIK F19628-80 "C- o002

LASSIFIED YN-19B0.3T ESD-TR-80-92 NL

smmmmmmmm
I mu._ .im



.......

hiI



ju
Cl

4744. ', 7-

MY'A'a

.... --------------- ..........
Rig.

's tx,

zr; 
xe

IV

-yw - - AW

..........

Wo

AL

kV se 4il

JF', f- er

Nw
fy

4k,

IN % A
K, 6k- 1- 3 ,M N-

N4 '11, wil,

jl-



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

A NEW ALGORITHM FOR TWO-DIMENSIONAL MAXIMUM

ENTROPY POWER SPECTRUM ESTIMATION

J. S. LIM*
N. A. MALIK*

Group 27

DTIC
^SELECTE_

m NOV 2 6 1980
TECHNICAL NOTE 1980-37

7 AUGUST 1980 B

Approved for public release; distribution unlimited.

*The authors are with the M.I.T. Research Laboratory of Electronics and M.I.T. Lincoln Laboratory.

LEXINGTON MA SSA C H USE T T S



ABSTRACT

A new iterative algorithm for the maximum entropy power

spectrum estimation is presented in this report. The algorithm

which is applicable to two-dimensional signals as well as one-

dimensional signals, utilizes the computational efficiency of

the Fast Fourier Transform (FFT) algorithm and has been

empirically observed to solve the maximum entropy power spectrum

estimation problem. Examples are shown to illustrate the

performance of the new algorithm.
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I. INTRODUCTION

The problem of power spectrum estimation (PSE) arises in

various fields such as speech processing [1], seismic signal

processing [21, image restoration [31, radar [41, sonar [5],

radio astronomy, etc., and its applications range from

identifying signal source parameters and transmission channel

characteristics to removing noise from images [3]. Consequently,

this problem has received considerable attention in the

literature and a variety of techniques for power spectrum

estimation have been developed.

One technique which has been studied extensively due to its

high resolution characteristics is the Maximum Entropy (ME)

method. For one-dimensional (l-D) signals, this method is

equivalent [71 to auto-regressive signal modelling, and thus

it leads to a linear problem formulation tnat is theoretically

tractable and computationally attractive [7]. Unlike most

other PSE techniques such as the conventional methods [8,9] and

the Maximum Likelihood Method [10], however, the ME method does

not extend from 1-D signals to two-dimensional (2-D) signals in

a straight-forward manner and the ME method for 2-D signal PSE

remains a highly non-linear problem.

To solve the non-linear ME PSE problem for 2-D signals,
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various attempts [2,11,12,13] have been made in the literature.

In all cases, however, the algorithms are computationally

unattractive, and there is no guarantee of a solution or only

an approximate solution can be obtained. For example, Burg [11]

has proposed an iterative solution which requires the inversion

of a matrix in each iteration where the dimension of the matrix

is in the order of the number of the given auto-correlation

points. No experimental results using this technique have yet

been reported. As another example, Wernecke and D'Addario [12]

have proposed a scheme in which an attempt is made to numeri-

cally maximize the entropy. The maximization is done by

continuously adjusting the power spectrum (PS) estimate and

evaluating the expressions for the entropy and its gradient.

The procedure is computationally expensive and is not guaranteed

to have a solution. As a third example, Woods [2] expresses

the ME PS estimate as a power series in the frequency domain

and attempts to approximate the ME PS estimate by truncating

the power series expansion. Even though such an approach has

some computational advantages relative to others, the method is

restricted to the class of signals for which the power series

expansion is possible. Furthermore, examples have been found

in which the algorithm does not converge to the desired ME PS

estimate.
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In this paper, we develop a new iterative algorithm which

is computationally simple due to its utilization of the Fast

Fourier Transform (FFT) algorithm and which leads to the true

ME power spectrum estimate for 2-D signals as well as 1-D

signals. In Section II, we review briefly previous results on

the ME PSE for 2-D signals. In Section III, we develop a new

algorithm for the ME PSE. In Section IV, we illustrate and

discuss the performance of this algorithm by way of various

examples.

II. PREVIOUS RESULTS ON ME POWER SPECTRUM ESTIMATION FOR 2-D

SIGNALS

In this section, we review briefly important previous

results relevant to this paper on the ME PSE for 2-D signals.

In reviewing these results, we use the following notations:

x(nln 2 ) : a 2-D random signal whose power spectrum we

wish to estimate.

R X(n11n2 ): auto-correlation function of x(nl,n 2)

Rx(n ln2: an estimate of R (n1 1n2)

P x (Wl,2) power spectrum of x(n1 n2 )

^P X (WI,2) an estimate of Px ( 1 1W2 )

X(nl,n2): auto-correlation function whose power spectrum

is 1/Px l, w2 )

3
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A a set of points (nl,n2 ) for which Rx(nl,n2)

is known

F :discrete time Fourier transform

-i
F: inverse discrete time Fourier transform

With the above notations, the ME PSE problem can be stated

as follows:

Given R x(nl,n 2 ) for (nl,n2)eA,

determine P (w 2 such that the entropy H given by7T I^
H = W log Px (lW 2 ) dw1 dw2  (1)

is maximized and

Rx(nl,n 2 ) = F-1Px(wl,w2)] for (nl,n2 )6A (2)

By rewriting Px(Wlw2) in terms of Rx(nlrn 2 ) for (nl,n2 )eA

and R x(nln 2 ) for (nln 2 )OA and then setting dH -
XdR,(n 1 ,n 2)

for (nl,n2)OA, it can be shown that the above problem is

equivalent to the following:

Given R x(nln 2 ) for (nl,n2 eA, determine Px( 1"2 )

such that P, 1w 2 ) is in the form of

4



Px(wIw2 )  X(nl,n 2 ).e-JWinl -eJ2n 2
(nl,n2)EA

[(nn2  F (PX(wl,AJ2 )] for (nl,n2)eA (4)

The above problem statement for the ME PSE applies, with

appropriate dimensionality changes, to all signals regardless of

their dimensionality. The solutions to the problem, however,

strongly depend on the signal dimensionality. For 1-D signals,

the mean square error minimization of the prediction filter

based on auto-regressive signal modelling requires solving a

set of linear equations for the filter coefficients and the

power spectrum obtained from the estimated filter coefficients

is identical to the ME PS estimate. For 2-D signals, this is

no longer the case. Specifically, even though minimizing the

mean square error of the auto-regressive filter still requires

solving a set of linear equations, the power spectrum obtained

from the estimated filter coefficients is not the ME PS estimate.

The reason for this can be seen by examining the form of the

normal equations for the filter coefficients in the auto-

regressive signal modelling. The derivation of the general

form of the normal equations for 2-D signals is analogous to

that for 1-D signals and is given by

5
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ai Rx(r-i, s-j) = R (r,s) for (r,s)GB (5)(i, j)eB 13xx

where a.. represents the auto-regressive filter coefficients toi3

be estimated, the set B consists of all points where the filter

mask has non-zero values, and the power spectrum obtained from

a.. is given by13

Px (Wl,'W2 =2 -jwlk -jw 2 Z 2 (6)

(k, Z) B

From equation (5), for any non-trivial choice of B, that is if

B does not consist of a set of collinear points, the size of

independent values of R x(nl,n 2 ) required to solve the above

set of equations is greater than the size of the filter mask.

For example, consider the filter mask shown in Figure l(a) in

which the solid dots represent the range for which a.. is non-

zero. In Figure l(b) is shown the size of independent values of

Rx(n,n 2 ) required to solve for aij in Figure l(a) by equation

(5). Clearly, the number of correlation points needed is

greater than the number of filter coefficients. Since the

estimated power spectrum given by equation (6) is completely

determined by the filter coefficients alone, it does not

possess enough degrees of freedom to satisfy equation (4) which

is required for the ME PS estimate. Due to this difficulty, a

closed form solution for the 2-D ME PSE problem has not yet

6
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Fig. 1. (a) First quadrant auto-regressive filter mask of size
3x2. (b) Independent auto-correlation points required to solve
the normal equations for the mask of (a).
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been found.

In the absence of a closed form solution, it is important

to know the conditions for the existence and uniqueness of the

solution. In this regard, Woods [2] has obtained the

theoretical result that if the given RX(n ln 2 ) for (nl,n2 )eA is

a part of some positive definite correlation function (meaning

that its Fourier transform is positive for all (wiw 2 )), a

solution to the ME PSE problem exists and is unique. In general,

it is difficult [14] to determine if the given segment of the

correlation function is a part of some positive definite

correlation function, even though this is generally the case

in most practical problems. In this report, we assume that

the given segment of the correlation function indeed forms a

part of some positive definite correlation function so that

the solution to the ME PSE problem exists and is unique.

III. A NEW ITERATIVE ALGORITHM

In this section, we develop a new iterative algorithm for

the ME PS estimates which is applicable to both 1-D and 2-D

signals. This algorithm is computationally simple since it

utilizes the computational efficiency of the FFT algorithm.
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Suppose we are given Rx(nl,n 2) for (nl1n2 )eA such that

R x(n1 n2 ) is a segment of some positive definite correlation

function. To find the unique ME PS estimate Px (wl,2), we

express a power spectrum Py (w 1 ' 2) as follows:

P y (Wl,2)= F[Ry,(nl,n 2)]

00~~~ iW1n1_w2fnl2
I I Ry(nl,n 2 ).e *e (7)

nl=-w n 2=-w

and 1and = F[ (nl, n2)]
Py(wl,2 )

= 0o -jW 1 nl J 2 n(2
I I (nl,n 2 ) ' e  (8)

nl- n2=-_

From equations (7) and (8), it is clear that R y(nlmn 2) can

be obtained from x (nln 2 ) and vice versa through Fourier trans-

from operations. Now, from equations (3) and (4) Py( 1 1,c 2 ) is

the unique ME PS estimate if and only if X(n1 ,n2 ) = 0 for

(nln 2 )OA and Ry(nl,n 2 ) = Rx(nln 2) for (n l n2 )eA. Thus, we

see that for Py(wlW 2 ) to be the desired ME PS estimate, we

have a constraint on Ry(nl,n 2 ) and a constraint on X(nl,n2).

Recognizing this, it is straight-forward to develop a simple

iterative algorithm to find the unique ME PS estimate.

Specifically, we go back and forth between R (nl,n2 ) (the

correlation domain) and x(nl,n2 ) (the coefficient domain) and

9! , . i
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at each time impose the constraints on Ry(n1 n2 ) and X(nl,n2).

Thus, starting with some initial estimate for A(nl,n 2 ) we obtain

an estimate for Ry(nl,n2 ). This estimate is then corrected by

the given Rx(ni,n 2 ) over the region A and is used to generate

a new X(nl,n 2 ). The new x(nl,n 2 ) is then truncated to the

desired limits and this procedure is repeated. The above

iterative procedure is illustrated in Figure 2 and forms the

basis for a new iterative algorithm for the ME PSE.

The iterative procedure discussed above is very similar

in form to other iterative techniques [15,16] that have been

successfully used in image processing. Even though tha condi-

tions under which the algorithm converges are not yet known,

if the algorithm converges the converging solution satisifies

both equations (3) and (4) and consequently is t4,e desired ME

PS estimate.

The algorithm in Figure 2 can not, in general, be used to

obtain the ME PS estimate without some modifications due to

the spectral zero crossing problem. Specificilly, the

algorithm in Figure 2 requires two inversions of the spectral

estimates in each iteration, and 1hus the algorithm can not be

continued if the power spectrum estimate has a zero crossing at

any stage in the iterative procedure. Unfortunately, zero

10
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INITIAL ESTIMATE OF X(n1,n2 )

4
R" 11 2)= [{ L(n1 ,n2)}

CORRECT Ry(nn 2) WITH Rx(nln 2) FOR (nl,n 2)eA

X(n1 n2) = F 1 F [R (n,)}

X(nln 2) = 0 FOR (nl,n2)/A

Px(l) I = F [R(nln 2)A I
Fig. 2. A new approach to 2-D maximum entropy
(ME) power spectrum estimation (PSE).
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II

crossings can occur in two different ways in each iteration.

One is the correction of the correlation function and the

other is the truncation of the coefficients. To see this, let

Xm(nl,n 2) and Rn(nlfn 2 ) represent X(nl,n 2 ) and R y(nl,n2) after

mth iteration and suppose that the following conditions hold;

F[xm(nlfn2] > 0 for all (wlw 2 ), (9)

F[Ry(nlfn2) > 0 for all (w1 ,w2 ), (10)

and X m[(nl,n 2 )  F-l 1 ]w(nl,n2 ) (11)

FRy ( 2 )

where w(nlfn 2) represents a rectangular type window such that

w(nl,n 2 ) = 1 for (nl1 n2)eA (12)

0 otherwise

Similarly, let X m+l(n l , n 2 ) and Rm+l(nlrn2 ) represent X(nlrn 2 )

and Ry(n,n 2 ) after m+lth iteration. In the iterative algorithm

of Figure 2, Xm+ l (n l ,n 2 ) and R+l(nlrn 2) are obtained from

xm(nl,n 2 ) by

R'(nl,n 2) F- 1 (1,F[Xm(nl,n 2 ) ]

Rm+l(nl 1 n2 ) = Rx(n 1 1 n 2 ) for (nlon 2 )eA

R' (nl,n 2 ) otherwise

= R' (nl,n2)+(R x(n 1 1n 2 )-R' (nl,n 2 )) ' w(nn 2 ) , (14)

12
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,-1

A) F[ + (n l (n2 )]' (l~n) = F [R ], 115)

m+ 1

and Xm+l(nl,n 2 ) = X'(nln 2 ) for (nl,n2 )EA

0 otherwise

= X'(nl,n 2 ) ' w(n l ,n 2 ) (16)

From equations (13)-(16), it is clear that R'(n 1 n2) is
positive definite since Xm(nln 2 ) is assumed to be positive

definite but Rm+l (nln 2 ) may not be positive definite due to

y2

the rectangular windowing w(nl,n 2 ) in equation (14). Further-

more, even if Rm + l (nln 2 ) were positive definite so that

A,(nl,n 2) is positive definite, m+l (nl,n2 ) may not be

positive definite due to w(n,,n,) in equation (16).

To ensure the resulting Rm (n n) and Xm+l(nn) are

positive definite so that the iterations can be continued, we

make a modification to equation (14). Specifically, instead cf
forming Rm+l(n l ,n2) by replacing R'(nln 2 ) with all its known

y (n 1 2  ( 1 n2)

values, namely Rx(nlrn 2 ) for (nl,n 2 )eA in equation (14), suppose

we form Rm+l (nlfn 2 ) by linearly interpolating between the valuesy fo 2

of R'(nl,n2 ) and the known values of Rx (nl,n2 ) for (nl1n2 )eA.

Then, in the modified iterative algorithm, m+(n,n 2  and
Rm+l (nl ) are obtained from Am (nlln by
y 2  2

R'(nl,n 2) F-I[ 1
F[m(n,n ] (17)

13
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Ry +l(nl,n 2) = a.R'(nln 2 )+(l-).Rx(n ln 2) for (nl,n 2 )eA

R' (nl,n 2) otherwise

= R' (nln 2 )+(l-a) (Rx(nl,n2 )-R' (nl,n2))

• w(nn 2 ) (18)

(nln 2) = F [ 1m+l (19)

and xm+l (nn 2) = X' (nln 2 ) 'w(nl ,n2) (20)

Comparing equations (14) and (18), equation (18) reduces to

equation (14) when a = 0. With any other choice of a, equation

(18) represents a non-ideal correction of R' (nl,,n2 ) with the

known values Rx(n1 n2 ) for (nln2 )A, with a larger deviation

of a from zero corresponding to a more non-ideal correction.

However, with proper choice of a, the resulting R y m+l(nl,n2
an m+l1

and (nlfn 2 ) can be guaranteed to be positive definite.

This can be seen by noting that Xm(nl,n 2 ) and therefore

R' (nl,n 2 ) are assumed to be positive definite and by considering
m+l1 m+ 1

a sufficiently close to 1 so that Ry (nlfn2 ) and X (nl,n 2)

can be made arbitrarily close to R' (nl,n2) and X m(nl,n2).

Therefore by properly choosing a in the range 0 < a < 1, the

spectral zero crossing problem can be avoided and the iterations

can be continued.

14



From equations (13)-(16), it is clear that if X m(nin2  and

Ry(nl1 n2 ) satisfy equations (9)-(11), then Xm+l (nl,n2 ) and

Rym+l (nl,n2 ) obtained by the modified iterative algorithm also

satisfy equations (9)-(11). With proper choice of a, then,

if X 0(nln 2 ) and R 0 (nl,n ) the initial estimates of Sy 2  (nn 2)

and Ry(nl,n 2 ), satisfy equations (9)-(11), the iterations

specified by equations (9)-(12) and (17)-(20) form an

iterative algorithm. This algorithm is shown in Figure 3.

In implementing the algorithm in Figure 3, there are

several important issues that need to be discussed. One of

them is the determination of the length of the Discrete Fourier

Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) to

be used for the Fourier transform and inverse Fourier transform

operations. In general, a large DFT length should be used in

the implementation to avoid any aliasing problem. Specifically,

the ME method of PSE is essentially an attempt to extrapolate

the correlation function beyond the limits of the known segment.

Since the DFT is used in the implementation instead of the true

Fourier transform, the length of the DFT should be chosen such

that the extended correlation function corresponding to the

ME PS estimate is essentially zero beyond the DFT limits.

Choice of the DFT length and its effect on the system perform-

ance will be further discussed in Section IV.

15
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POSITIVE DEFINITE INITIAL ESTIMATES

Ry(nl 21 AND I

ISm(0l,n 2 1J

R (n n
2 
1 R'(n

1
,n

2
) (I - IE(n

1
,n

2  - R.nn 2 ) . w(n
1,n2)

FOn .1 -FIf . . I -_

X'(n, n 2 'n

1 V2

XI In, 
2I -

1 
( ,n

2
1 w(nl,n 

2 1

WHERE 0 I IS CHOSEN SUCH THAT RP (n
1
,n

2) AND

m" I nln2
1 2 ARE POSITIVE DEFINITE

* DESIRED SOUTION.

P 21 1 1,

Fig. 3. An iterative algorithm for 2-D
ME PSE based on Fig. 2.
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Another issue to be considered in the implementation is

determination of x 0 (nl,n2 ) and R0 (nl,n2), the initial estimates

of X(n1 n2 ) and R (nl,n2. Even though various different

choices are possible, one choice which is particularly simple

and satisfies equations (9)-(11) is

0R0(n ly ,n2 = R x(0,0).6(nl'n2) (21)

1
and X0 (nl,n 2 ) = R (0,0)' *(nl,n 2 ) (22)

where it is assumed that the region A includes the point

(nlrn2) = (0,0) and that R x(0,0) > 0. Furthermore, the choice of

0 0x (nl,n2) and R0(nl,n2 ) given by equations (21) and (22) is

reasonable in that Rm(nl,n) = R,(nl,n2)'w(nlfn 2 ) for m = 1 andy 12 2 ,n)wn 1 2) o n

S= 0 in the iterative algorithm of Figure 3.

A third issue to be discussed in the implementation is how
the value of a is specifically determined in each iteration.

The choice of a is dictated by two considerations. One is the

M+1 m+lrequirement that the resulting R ym(nl1n2 ) and X (nln 2 ) are

positive definite. The second is our desire to choose a as

close to zero as possible so that more correction with the

known correlation points is made in each iteration. Thus, the

ideal choice of a is the smallest a in the range 0 < a < 1
m+l xm+l

for which the resulting Ry (nl,n2 and X (nl,n2) are

17



positive definite. Finding the optimum value of a, however, may

require many iterations in which we begin with a = 0 and
m+l

successively increase a until the resulting R (nl,n 2 ) and

Xm+l (nl,n 2 ) are positive definite. Since each iteration requires

one DFT and one IDFT, obtaining a alone can be a significant

computational burden. Further, it has been empirically

determined that choosing the smallest a in each iteration can

lead to a limit cycle behavior where the algorithm does not

converge to the ME PS estimate.

An alternative approach to the choice of a, which avoids

the above two problems and is used in this paper, is to begin

with a 0 = 0 and change a in the following manner;

min [F(R' (nl,n 2 )]] (23)

cc max[c l-k(l, 12 )
m+lm min F[(Rxn,n 2 )-R'(nln 2 ))w(nl'n2 )I]

(WlW2)

if min [F[(Rx(nl,n2 )-R' (n 1(wl,Wj2) x12 (nn))wnn)] <0

and cm+l*-Cm otherwise,

where ai represents the value of a in the ith iteration,

max[ , ] represents the maximum of the two arguments, min [
(iW 2 )

represents the minimum of the argument expression over (wi,2),

and "k" is a scalar constant with 0<k<l. Typically, "k" is

18



chosen to be 0.01, but can be increased to 1 for low S/N ratio

cases. When a is chosen according to equation (23), it is

straight-forward to show from equation (14) that the resulting

R m+ (nln 2 ) is always positive definite. In addition, it has
ym 1

been empirically observed that the resulting X m+(nl,n2 ) is

almost always positive definite. In those rare cases when

Xm+1 (nl,n 2 ) is not positive definite, a is further increased

and the iterations continue with the increased a.

Finally, another important issue to be considered in

implementing the algorithm in Figure 3 is the decision on when

the algorithm converged so that the iteration can be stopped.

One reasonable approach is to consider that the algorithm

has converged when the following condition is satisfied.

I I (R' (n l , n 2) - R x ( n l , n 2) ) 2
~(n I ,n 2 ) A

2 < E(24)

[ R 2(nl1n 2 )
(nl,n2 )eA x

clearly, if e = 0 and the algorithm has converged, then the

converging solution corresponds to the desired ME PS estimate.

However, due to a finite DFT length and finite precision

arthematic used, it is not possible to reduce the error

exactly to zero. A convergence decision is made when the error

19
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c is very small, typically 10
- 4

In Figure 4 is shown a more detailed flow chart of an

algorithm which incorporates the important implementation

issues discussed above. It is not theoretically known under

what conditions the algorithm in Figure 4 converges. As will

be discussed in the next section, however, we have empirically

observed that the algorithm always converges to the ME PS

estimate with a sufficiently large choice of the DFT length and

a sufficiently small choice of e.

IV. EXAMPLES AND DISCUSSIONS

In this secticn, we illustrate and discuss various

examples in which the algorithm in Figure 4 has been applied

to obtain the ME PS estimate. In all cases, it was assumed

that the correlation function originated from sinusoids buried

in white noise so that the correlation function given has the

form of

2 M 2Rx(n) = a -6(n)+ ai.cos(Win) for 1-D signals (25)
i=li

2 M 2and Rx(n 1 ,n 2) =  .6(n 1 'n 2 )+ a.'cos( iln1 +Wi2'n 2

for 2-D signals (26)

2
where a represents the white noise power, M represents the

20
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GIVEN:
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0 .0 1-

INITIAL ESTIMATE:

X
0
(n,,n

2 ) R (0, 0) 1

R' =, 2 OFT IOTI I
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XI (: in OFTI ' 1n2

x2 (.miO2 (DFT((R (n,, 02) nF)
0 

, )I-~ 0'(nli,f2H)

0110
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-4x 2> 0 ?
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0~0) 0, X21

- n n R '(nn) a. h)R (n,, 2 R'(,n )1 ,,
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1 

',
2
) '2 1 - 2 - '2 'I'2

OFT __(,, 1

1' 2 I' I'n 2)
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YES4

'R(,n2 R '1"2 1
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> (n, nR (n A

- I ', 2 1

NO

P .. "2~ OFT fR '(0,,02))

Fig. 4. A detailed flow-chart of the iterative algorithm
for 2-D ME PSE implemented in this paper.

21



2
number of sinusoids, a. represents the power of the ith

sinusoid, and wi for 1-D signals and wil and wi2 for 2-D

signals represent the frequencies of the ith sinusoid.

We first consider the case of l-D signals. For 1-D

signals, the iterative algorithm in Figure 4 is not very useful

in obtaining the ME PS estimate due to the existence of a

simple closed form solution. However, the 1-D signal case is

ideal in illustrating that the solution obtained from the

iterative algorithm in Figure 4 indeed leads to the ME PS

estimate. In Figure 5 are shown the results obtained using the

parameters in Table 1. In Figure 5(a) are shown the results

obtained from the iterative algorithm as a function of the

number of iterations. The converging solution with the

choice of c in Table 1 was obtained after 200 iterations. In

Figure 5(b) is shown the ME PS estimate obtained from the

closed form solution of equation (6). Figure 5(c) shows the

PS estimates obtained from the iterative algorithm (solid line)

and the closed form solution (dotted line). It is clear from

Figure 5(c) that the iterative algorithm leads to the ME PS

estimate.

As another 1-D example, Figure 6 is similar to Figure

5 except that the parameters in Table 2 were used to generate

the results. In addition to the above two examples, a variety

of other examples have been considered. In all cases

22



TABLE 1

Parameters of a one-dimensional example for Figure 5.

2 2
A M a a. wi/2T C NDFT NITR TIME

9 1 1.0 1.0 0.1 10 - 4  128 200 3 secs.

0.3456

A size of the known auto-correlation array,

symmetric about the origin

M : number of sinusoids

2
a : noise power

2

i : power of ith sinusoid

W : frequency of ith sinusoid
1

: error used for the convergence test

NDFT : size of discrete Fourier transform used

NITR : number of iterations required to reach c

Time : the CPU time required using IBM-370 at M.I.T.

Lincoln Laboratory

23

_ _ _ _ _



00

-5 5

,1i: -1

0

,1 -15

-20

'pN 1980-37 (5a)]

- 2 5 I I I I 1 , ,

0.0 0.1 0.2 0.3 0.4 w/2r 0.5

(a) The PS estimate as a function of the number of

iterations (NITR). NITR = 0, 25, 50, 75, 100, 125,
150.

Fig. 5. 1-D PSE for the data in Table 1.

24



0

-4.2

-8.5

0

E- 13

o. -17

LN 1980-37 (5b)I
-21 rI

0.0 0.1 0.2 0.3 0.4 w/27 . 0.5

(b) Results of ME PSE by the closed form solution
of equations (5) and (6).

Fig. 5. Continued.

25



0

-4.2

;t8.5

0

E- -13

0
0-17

-21 IN~i 1980-37(5 c)

0.0 0.1 0.2 0.3 0.4 0.5

(c) Result of the iterative method (solid line).
Result of the closed form solution (dotted line).
The two results are indistinguishable.

Fig. 5. Continued.

26



that we have considered so far, the iterative algorithm in

Figure 4 lead to the PS estimates which are visually

indistinguishable from the closed form solutions.

TABLE 2

Parameters of a one-dimensional example for Figure 6.

Notations used in the table are explained in Table 1.

A M a2 a 2W/2T E NDFT NITR Time

5 1 1.0 10 0.1 10- 4  64 69 less than 1 sec.

We now consider the case of 2-D signals. For 2-D signals,

a closed form solution for ME PSE has not yet been found and

consequently the iterative algorithm developed in this paper

has practical significance. In Figure 7 are shown the results

obtained using the parameters in Table 3. In Figure 7(a) is

shown the periodogram [9] obtained by Fourier transforming

Rx (n 1 n 2).w(nlin2). In Figure 7(b) is shown the PS estimate

based on auto-regressive signal modelling of equation (6) using

a backward L shaped filter mask 116]. This particular mask was

chosen due to its high performance (16] relative to other filter

mask shapes such as symmetric and first quadrant filters. In
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Figure 7(c) is shown the PS estimate obtained from the

iterative algorithm developed in this paper. To ensure that

the PS estimate shown in Figure 7(c) corresponds to the ME PS

estimate, an additional estimate was obtained using a larger

DFT size of 128 x 128 points and a much smaller s of 10- 6 and

was compared to the result in Figure 7(c). The two estimates

were visually indistinguishable. It is clear from Figure 7

that the two sinusoids are resolved only in Figure 7(c), implying

that the ME method for PSE has the high resolution characteris-

tics for 2-D signals as well as 1-D signals.

TABLE 3

Parameters of a two-dimensional example for Figure 7.

Notations used in the table are explained in Table 1.

I 2 2
A M a a. (i/2T,wi2/2,,) 6 NDFT NITR Time

5x5 2 1.0 1.0 0.10 0.10 10 - 4  64x64 199 75 secs.

1.0 0.20 0.3125
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In using the iterative algorithm developed in this paper,

care should be exercised in properly choosing the DFT length.

As has been discussed in Section III, a smaller aliasing error

requires a longer DFT. However, once the DFT length is chosen

so that the aliasing error is sufficiently small relative to c, a

further increase in the DFT length makes little improvement in

the spectral estimates, but only increases the computational

requirements. To give a rough estimate of the DFT length needed

in practice, a number of examples have been considered and the

ranges of DFT lengths required for c = 10 - 4 have been computed

as a function of the S/N ratio and the size of A. The S/N

ratio in dB is defined as

M 2
M 11 ail 2

S/N ratio in dB A 10.1g( i lo-( 2  ....- ) (27)
0

and the computed results are shown in Table 4.

TABLE 4

Typical ranges of minimum DFT size needed in practice

to achieve convergence of the algorithm in Figure 4

with e = 10 .

Size of A

S/N ratio 1-D Signals 2-D Signals__

5 9 3x3 5x5

-10 db 8-16 8-32 8X8 8x8 - 16×l6

0 db 16-64 32-128 8x8 - 16x16 16x16 - 64x64

+10db 64-512 64-1024 32x32-256x256 64x64-512x512
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From Table 4, it is clear that cases in which the S/N ratio

is higher or the size of A is larger require longer DFTs. This

is due to the fact that the correlation functions given in

equations (25) and (26) represent more sinusoidal behavior in

region A for a higher S/N ratio or larger size of A. Therefore,

the extended correlation functions by the ME method for such

cases tend to be longer and thus require longer DFTs. To

further illustrate this point with specific examples, we have
2=

considered a case in which 0.5 with all other parameters to

be the same as in Table 3 and another case in which the size of

A is 7x7 with all other parameters to be the same as in Table 3.

To obtain the desired ME PS estimate, both cases required the

DFT size of 128x128.

If there is significant aliasing error relative to the

E used for the convergence test, then the algorithm does not

converge. For example, if the DFT size of 32x32 is used for

the example of Figure 7, the algorithm does not converge. In

such a case, the DFT length has to be increased to obtain the

ME PS estimate. If the DFT length can not be increased due

to computational constraints, c has to be increased to toler-

ate a larjer aliasing error. In such a case, the resulting

PS estimate will only be an approximation to the ME PS

estimate.
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In general, cases in which the S/N ratio is lower or the

size of A is smaller require less computations to reach the

desired ME PS estimate for two reasons. One reason is that such

cases require shorter DFT lengths, as are clear from Table 4.
2

Another reason is that a larger noise power (o ) contributes

a larger positive spectral component in the correlation correct-

ion step and the Fourier transform of a smaller rectangular

window has a smaller amplitude in its negative lobe. The effdct

of this is generally a smaller value of a in each iteration and

therefore more ideal correction of the correlation function in

each iteration. Consequently, for such cases, a smaller

number of iterations is required to reach the ME PS estimate.

In fact, when the S/N ratio is sufficiently low and the size of

A is sufficiently small, the value of a can be chosen to be 0

in all iterations and the computation time can be significantly

reduced. As an example, we have considered a case in which
2

a = 6.0 and size of A = 3x3 with all other parameters to be

the same as in Table 3. The computation time required in

generating the ME PS estimate for this case was 4.5 seconds of

CPU time using IBM 370 at M.I.T. Lincoln Laboratory. This is

significantly shorter than 75 seconds required to generate the

result in Figure 7(c).
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Two additional examples of 2-D ME PS estimates are

shown in Figures 8 and 9. The results in these two figures

were obtained using the parameters in Tables 5 and 6 respec-

tively.

In addition to the above examples, we have considered a

variety of others. In all cases that we have considered so

far, we have empirically observed that the algorithm always

converges to the ME PS estimate for a sufficiently large

choice of DFT length and a sufficiently small choice of e.

In addition, we have also observed that the ME PS estimates

for 2-D signals have high resolution characteristics similar

to the 1-D case. A more quantitative study on the high

resolution characteristics of the ME PSE method for 2-D

signals is currently under investigation.

In this paper, we have developed a specific numerical

algorithm to estimate the power spectrum of a signal by the

ME method. Even though this algorithm led to successful

results, there is considerable room for further imporvements

of the algorithm. For example, to avoid the spectral zero

crossing problem in both the correlation domain and the

coefficient domain, we have considered a smaller correction

only in the correlation domain. An alternative approach
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TABLE 5

Parameters of a two-dimensional example for Figure 8.

Notations used in the table are explained in Table 1.

2 2
A M a a i  (Wi/ 2 r,w i 2 / 2 T) NDFT NITR Time

5 5 2 2.0 2.0 0.3333 0.20 10 - 4  64x64 71 26.8 secs.

1.0 0.10 0.22

TABLE 6

Parameters of a two-dimensional example for Figure 9.

Notations used in the table are explained in Table 1.

i2A 2 a i  (wii/21T, i2 /2T) INDFT NITR Time

7x7 3 6.0 1.0 0.10 0.10 10.4 32x32 42 5 secs.

1.0 0.30 0.10

1.0 0.20 0.20
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would be to perform a smaller correlation correction and a

smaller coefficient correction to avoid the spectral zero

crossing problems in the correlation and coefficient domains

respectively. Such an approach may allow more optimum choice

of the parameters such as a without significant computational

burden. This and other ways to improve the performance of

the algorithm are currently under investigation.

Finally, in this report, we have considered the ME PSE of

only 1-D and 2-D signals. However, the iterative algorithm

developed is based on the notion that the ME PS estimate should

be consistent with the given correlation points in the region

A and the corresponding coefficients should be zero outside the

region A, which car, be applied to signals of all dimensions.

Consequently, the iterative algorithm developed in this paper

may also be useful for the ME PSE of signals whose dimensions

are higher than two.
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